* Zoomを用いたオンラインセミナー *

2021年1月19日(火) 11:00〜16:30 開催

*  *  *  *  *

CNNのディープラーニングによる

顔識別の高精度化と、最適な撮影システム

  今日の顔識別技術は、CNN(畳み込みニューラルネットワーク)のディープラーニングの活用により、「人の目」を遥かに超えたびっくりするような性能が実現しています。例えば、整形手術や長期経年変化により「人の目」には全くの別人としか思えないような顔でも、顔識別技術では瞬時に看破することができます。顔画像には6つもの変動要因(緻密度、鮮明度、撮影角度、表情、経年変化、メガネやマスクの有無)があるので、人の手による識別アルゴリズムの明示的な設計が難しい対象でした。このような対象こそ、ディープラーニングを用いて、ニューラルネットワークの中に識別アルゴリズムを暗示的に生成する方法が、大きな効果を発揮できるところなのです。

 

 本セミナーでは、ディープラーニングの基礎から始め、CNNのディープラーニングによる顔識別の仕組みや動作、最先端の識別性能などを、多数の顔画像を例示して分かりやすく説明します。また、顔識別技術の優れた性能をフルに引き出すには、最適な撮影システムの構築が欠かせません。そこで、デジタルビデオカメラの特徴や性能、顔識別技術とデジタルビデオカメラを組み合わせた「機械の目」の特性や識別精度向上方策などについても、分かりやすく説明します。

 

 また、本セミナーで、【ディープラーニングの動作原理、仕組み、立ち上げ方、学習方法】、【CNNのディープラーニングによる顔識別の動作原理と仕組み】、【CNNのディープラーニングで顔識別が高精度化する理由と最先端の識別性能】、【デジタルビデオカメラの特徴と性能】、【顔識別技術とデジタルビデオカメラを組み合わせた「機械の目」の特性】、【他人誤認率を極力低減した上で本人発見率を高めるための撮影システム】、【顔識別における「人の目」と「機械の目」の特性の違い】を理解することを目指します。

セミナーの詳細と申込はこちらへ ➡︎ http://www.triceps.co.jp/seminar/s210119aw.html